Geometrically exact beam theory without Euler angles
نویسندگان
چکیده
منابع مشابه
Geometrically Exact Theory of Contact Interactions–Further Developments and Achievements
The focus of the current contribution is on the development of the unified geometrical formulation of contact algorithms in a covariant form for various geometrical situations of contacting bodies leading to contact pairs: surface-to-surface, line-to-surface, point-to-surface, line-to-line, point-to-line, point-to-point. The construction of the corresponding computational contact algorithms are...
متن کاملGeometrically-exact, intrinsic theory for dynamics of moving composite plates
Article history: Received 1 February 2008 Received in revised form 4 May 2008 Available online 21 May 2008
متن کاملGeometrically exact dynamic splines
In this paper, we propose a complete model handling physical simulation of deformable 1D objects. We formulate continuous expressions for stretching, bending and twisting energies. These expressions are mechanically rigorous and geometrically exact. Both elastic and plastic deformations are handled to simulate a wide range of materials. We validate the proposed model on several classical test c...
متن کاملOn Generalized Dual Euler Angles
This paper first explores the generalization of Euler angles to the case in which the rotation axes are not necessarily members of an orthonormal triad, and presents a concise solution to their computation that relies on the calculation of standard Euler angles. Then, this generalization is taken one step further by introducing translations, that is, by defining generalized Euler angles about s...
متن کاملCoupling Geometrically Exact Cosserat Rods
Cosserat rods are models for long slender objects. Let SE(3) = R3 SO(3) be the 13 group of orientation-preserving rigid body motions of R3 (the special Euclidean 14 group). A configuration of a Cosserat rod is a map φ : [0,1] → SE(3). For each 15 s ∈ [0,1], the value φ(s) = (φr(s),φq(s)) is interpreted as the position φr(s)∈R and 16 orientation φq(s)∈ SO(3) of a rigid rod cross section. Strain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2011
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2011.07.003